Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 216: 320-327, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779976

RESUMO

Triclosan (TCS); a widely used antimicrobial biocide, exists in several pharmaceutical and personal care products. Due to its wide usage, TCS is detected in wastewater at varying concentrations. Biological treatability of TCS and its effect on chemical oxygen demand (COD) removal efficiency were investigated running laboratory-scale pulse-fed sequencing batch reactors with acclimated and non-acclimated cultures. The culture was acclimatized to TCS by gradually increasing its concentration in the synthetic feed wastewater from 100 ng/L to 100 mg/L. There were no effects of TCS on COD removal efficiency up to the TCS concentration of 500 ng/L for both acclimatized and non-acclimatized cases. However, starting from a concentration of 1 mg/L, TCS affected the COD removal efficiency adversely. This effect was more pronounced with non-acclimatized culture. The decrease in the COD removal efficiency reached to 47% and 42% at the TCS concentration of 100 mg/L, under acclimation and non-acclimation conditions respectively. Adsorption of TCS into biomass was evidenced at higher TCS concentrations especially with non-acclimated cultures. 2,4-dichlorophenol and 2,4-dichloroanisole were identified as biodegradation by-products. The occurrence and distribution of these metabolites in the effluent and sludge matrices were found to be highly variable depending, especially, on the culture acclimation conditions.


Assuntos
Reatores Biológicos , Esgotos , Triclosan/química , Aclimatação , Biodegradação Ambiental , Triclosan/isolamento & purificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água
2.
J Environ Manage ; 204(Pt 1): 327-336, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28910731

RESUMO

Removal of triclosan from surface water by ozonation was investigated. The results showed that complete elimination of triclosan from a surface water bearing 1-5 mg/L triclosan via continuous ozonation at 5 mg/L, require an ozonation time of 20-30 min depending on pH. Triclosan oxidation followed pseudo-first order kinetics with an apparent reaction rate constant varying from 0.214 min-1 to 0.964 min-1 depending on pH, initial triclosan concentration and water composition. Although the effect of pH was complex due to possible existence of different moieties, higher TCS removal efficiencies were obvious at weak-base conditions. Experiments performed to identify degradation by-products showed the formation of four by-products, namely, 2,4-dichlorophenol, 4-chlorocatechol and two unidentified compounds. Additionally, 2,4-dichloroanisole was detected when a methyl moieties exist in water. By-products were found to be eliminated upon further ozonation. The required exposure time varied from 20 to 30 min depending on pH of water. The ozone demand exerted for the complete oxidation of triclosan and its by-products was calculated as 13.04 mg ozone per mg of triclosan. A triclosan degradation pathway, which was found to be highly pH dependent, was proposed.


Assuntos
Catecóis/química , Clorofenóis/química , Ozônio/química , Triclosan/química , Purificação da Água/métodos , Cinética , Oxirredução , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...